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The Timoshenko beam model results in two fourth order partial di!erential equations in
time and space. Consequently, solving the boundary value problem yields two independent
sequences of natural frequencies and two corresponding sequences of mode shapes.
A particular natural frequency and its corresponding mode shape describe one particular
solution to the boundary value problem of the Timoshenko beam. From an eigenfunction
expansion sense, all these possible solutions have to be considered in the complete series
expansion of the solution. However, the question of whether these two independent
sequences of natural frequencies, implies the existence of two distinct spectra of frequencies,
has been a long standing topic of debate, and hitherto has not been resolved completely. The
object of this paper is to provide answers to some of the issues raised by this debate. In this
context, the complete solution in a series form to the Timoshenko beam is investigated, and
it is shown for the "rst time that a particular mode shape of the solution is naturally
expressed by an ordered pair of characteristic values, rather than a single characteristic
value. This representation facilitates the progressive ordering of all the natural frequencies of
the system and their respective mode shapes in a single set, and eliminates the remaining
argument for the two spectra interpretation.
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1. INTRODUCTION

The Timoshenko beam model is widely used, in the analysis of the transverse vibration of
non-slender beams. It has been shown in the literature that the predictions of the
Timoshenko beam model are in excellent agreement with the results obtained from the
exact elasticity equations and experimental results [1}4]. In essence, the Timoshenko beam
model adds rotary inertia and shear distortion e!ects to the Bernoulli}Euler model, which
incorporates only the e!ects due to bending moment and lateral displacement. As a result of
these terms in the Timoshenko model, a fourth order time di!erential term appears in the
governing equations and causes a di$culty in deriving the solutions. Two main approaches
exist in the literature for solving the Timoshenko beam equations. One is the Laplace
transform method [5, 6], which results in an integral form solution, and the other is the
method of series expansion [7]. This latter approach, also referred to as the eigenfunction
expansion method, is usually preferred, since as pointed out by Anderson [8], the elements
of the solution such as the mode shape and the natural frequency are thereby readily
obtained.

Trail-Nash and Collar [4] carry out an exhaustive theoretical study of the uniform
Timoshenko beam using the series expansion method. They point out that for natural
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frequencies greater than a critical frequency, a change in the form of the mode shape occurs
and interpret this change as a consequence of an existence of a second distinct spectra.
Anderson, in an independent study [8], shows that since the Timoshenko beam equations
are fourth order in both time and space, in general two sets of real frequencies and
a corresponding mode shape for each frequency exist and hence the most general solution is
a combination of them. Dolph [9] argued that for the hinged}hinged beam, two distinct
natural frequencies correspond to the same spatial mode shape and that it constitutes the
existence of a second distinct frequency spectra. However, Levinson and Cooke [10]
observed, on the basis that a particular mode shape is the pair of functions describing the
transverse de#ection and the rotation of the cross-section, that even for the hinged}hinged
beam the two frequencies from the apparent two distinct spectra will correspond to two
distinct mode shapes and therefore will not imply the existence of two distinct spectra in an
eigenvalue eigenfunction sense, especially since the natural frequencies form a single
ordered set. Levinson and Cooke [10] further argued that for boundary conditions such as
clamped}clamped or free}free, a simple uncoupling in terms of the spatial characteristic
value parameters of the frequency equations is not possible and hence it might not even be
relevant to consider the existence of two distinct spectra in such cases.

Downs [11] using a dynamic discretization method reported the existence of the two
spectra, as well as the pure shear frequency, for a hinged}hinged beam. In this paper,
a physical interpretation of the nature of the modes, particularly for those with no resultant
transverse de#ection, is also attempted. Abbas and Thomas [12] after a detailed analysis of
the results obtained from a "nite element model of the Timoshenko beam concluded that
except for the hinged}hinged beam a distinct second spectrum of frequencies does not exist.
However, contrary to this, Bhashyam and Prathap [13], also using a "nite-element-based
numerical analysis, argued that two distinct spectra exist even for boundary conditions
other than hinged}hinged conditions. A letter by Prathap [14] in reply to the "ndings by
Levinson and Cooke [10] contends that a simple ordering of the natural frequencies is
insu$cient and that a simultaneous ordering of their corresponding mode shapes is also
required. In this context, he argues that the numerical evidence given in reference [13]
shows that it is not possible to interpret the natural frequencies and their corresponding
spatial eigenvalues as belonging to a single ordered set but to two independent sets, as
would be in the case of two distinct spectra of natural frequencies. For the case of the
hinged}hinged beam, and later more generally for other boundary conditions [13], Abbas
and Thomas [12] also show that the lower set of frequencies are bounded below by the
Bernoulli}Euler model and simple shear model frequencies, while the upper set of
frequencies are bounded below by the pure shear model frequencies. It is also shown in
references [4, 8, 12, 13] that this second set of frequencies tends to in"nity as the rotary
inertia and shear e!ects of the cross-section tend to zero. Further, Nesterenko [15] using an
energy-based method argued that this second set of frequencies does not have a physical
signi"cance. Stephen [3], comparing these second set of frequencies to those values
obtained from the exact elasticity equations, shows that this second set of frequencies could
not be related to any particular solution obtained from the exact elasticity equations and
hence argues that they do not have a physical signi"cance.

The objective of this paper is to provide a critical analysis of the solution of Timoshenko
beam equations using the classical technique of series expansion. The analysis will be
performed as a whole, over the entire range of natural frequencies, without the need for
considering two frequency ranges. Therefore, all the equations derived will be valid for the
entire range of natural frequencies. The dependent nature of the spatial characteristic values
will be investigated in section 3.2, and it will be shown for the "rst time that the frequency
equations are a function of only one independent spatial characteristic value. Therefore, it
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TIMOSHENKO BEAM 669
will be shown that in fact there exist two frequency equations which yield, not only two
single characteristic values for the system, but two pairs of them. The importance of
considering the spatial characteristic values in pairs to represent a particular mode shape
will be emphasized in section 3.3, whereby the issue of the two frequency spectra of the
Timoshenko equation will be addressed. This will be considered in the context of whether or
not two independent orderings of natural frequencies exist and it will in fact be shown that
a single simultaneous ordering of the natural frequencies and their corresponding pairs of
characteristic values is possible.

2. BEAM EQUATIONS

In deriving the beam equations, a set of assumptions are made, namely, small de#ections,
plane sections remain plane before and after deformation, Poisson e!ects on the beam are
negligible, and material properties are linear elastic homogeneous and isotropic. The
restriction on plane sections remaining plane before and after deformation, prompted
Timoshenko to make certain corrections for the shear stresses acting on a cross-section. For
a clear and concise study of the importance of this factor and for an approach of calculating
this factor for various cross-sections the interested reader is referred to the paper by Cowper
[16]. Under these assumptions, the Hamilton's principle for the system yields the following
Timoshenko beam equations for free vibration:
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where y (x, t) is the total transverse de#ection, h(x, t) is the rotation of the cross-section due
to bending, E is the modulus of elasticity, G is the modulus of rigidity, g is the gravitational
constant, I is the area moment inertia of the cross-section, A is the cross-sectional area, o is
the density, and k @ is the shear correction factor. Furthermore, Hamilton's principle also
yields the following four boundary conditions for the problem:
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Eliminating y or h from equations (1) or (2), the following two uncoupled di!erential
equations in y and h are obtained by Huang [2]:
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with coupled boundary conditions (3) and (4).
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670 S. EKWARO-OSIRE E¹ A¸.
3. SOLUTION OF THE BEAM EQUATIONS

An analysis of the procedure of solving the Timoshenko beam equations given by
equations (5) and (6) subjected to the boundary conditions (3) and (4) will be carried out in
this section. The derivation of the characteristic equation and the general solution for the
spatial variables will be presented in section 3.1, along with a description of the ideas that
had led to the claim of the existence of two distinct frequency spectra. In section 3.2, the
inherent-dependent relationship between the spatial characteristic values will be
demonstrated for the "rst time while in section 3.3 the issue, on the interpretation of the
existence or the non-existence of a second spectra would be dealt with, in an eigenvalue
eigenfunction sense.

3.1. THE SPATIAL SOLUTION

Equations (5) and (6) are fourth order homogeneous linear PDE and since a solution
harmonic in time is been sought, product solutions of the form

y (x, t)"A
y
e*ut> (x), h (x, t)"Bhe*utH (x), (7, 8)

are assumed. Substituting equations (7) and (8) into equations (5) and (6), respectively, the
following two ODE for >(x) and H (x) are obtained:
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This set of ODE can be transformed into the following non-dimensional form by
substituting f"x/¸ and

g (f)"G
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L

H(f)H, /2"u2
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into equations (9) and (10), yielding
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Here / is a parameter proportional to the natural frequency, u, of the system and is usually
referred to as the natural frequency parameter of the system. Furthermore, using a"I/A¸2

and b"(I/A¸2) E/k @G, equation (13) reduces to

d4g
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d2g
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!/2(1!/2ab)g"0. (14)

Trail-Nash and Collar [4] pointed out that with a"0 equation (14) reduces to the simple
shear model equation and with a"0 and b"0 corresponds to the simple Bernoulli}Euller
model equation.
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Since equation (14) is a fourth order ODE, it has four exponential solutions of the form
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where it has been shown in references [2, 8] that the relationship between the two arbitrary
constants c and d can be deduced from equation (2) as
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Substituting equation (15) into equation (14) the characteristic equation of the system is
obtained as
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which is fourth order in both the spatial characteristic value j and the natural frequency
parameter /. Hence, for a given particular natural frequency parameter /
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where c
ni

and d
ni

are arbitrary constants. From equation (16) it would be clear that only four
of the arbitrary constants appearing in equation (18) are independent. The relationship
between them is to be deduced from equation (16) and is given in Appendix A.
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is real and thus it can be deduced that, in this range of frequencies,

equation (18) will contain only trigonometric terms. This change of form in equation (18) is
what led Trail}Nash and Collar [4], and others as well, to speculate on the existence of
a second spectrum where they interpreted it as a change in the mode shape of the solution.
The frequency corresponding to this apparent mode change is given by
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However, in contrast to the convention in the cited papers, and others, we feel that there is
no necessity to consider two forms of mode shapes for the two frequency ranges. Rather it is
su$cient to consider equation (18) as the sole form of the mode shape corresponding to all
frequencies, where, when q

n
is purely imaginary in equation (18), the second form of the

mode shape, which contains only trigonometric terms, naturally results.

3.2. THE DEPENDENCY OF THE SPATIAL CHARACTERISTIC VALUES

The dependent nature of the spatial characteristic values will be presented in this section
for the "rst time, where from equations (21) and (22) it can be inferred that the spatial
characteristic values p

n
and q

n
are not independent, and that the dependencies can be

expressed as
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and will be greater than zero for p2
n
(p2

c
, where p

c
is referred to as the critical spatial

characteristic value of the beam. Following a similar argument it can also be shown that for
positive q2
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, p2
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and that for negative q2
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substituting equation (27) into equation (28) it can also be shown that if q
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shown in Figure 1, where for a particular p
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Thus, as a result of the existence of these dual characteristic values, it will be incomplete
to consider only p

n
and q

n
in isolation as the spatial characteristic values of the beam. Rather

it will be preferable, to consider the ordered pairs Sp
n
, q

pn
T and Sp

qn
, q

n
T as the spatial

characteristic values of the beam. In what follows, we shall see that, in fact, this gives rise to
the desired ordering of the natural frequencies along with their corresponding mode shapes.

Recall that the solution to the governing ODE (14) for g(f) is given by equation (18). Four
boundary conditions in g (f) are needed to determine the four independent arbitrary
constants in equation (18). Substituting equation (18) into the four boundary conditions
given by equations (3) and (4) results in four linear homogeneous equations in the four
unknowns. The determinant of the coe$cient matrix of the afore referred system of
equations need to be zero, in order to obtain a non-trivial solution for the four independent
arbitrary constants. Hence, setting the determinant to zero yields the frequency equation of
the system, which from equation (18) is seen to contain both trigonometric terms in p

n
and

hyperbolic terms in q
n
. However, as discussed in the previous paragraph, these p
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not independent and thus it is more appropriate to consider two frequency equations; one in
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The p
n

and q
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appearing in equation (31) are related by equation (27), while p
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and q
n

appearing in equation (32) are related by equation (28). Generally, an in"nite sequence of
real values of p
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satisfying equation (31) exists and for each of these p
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, the corresponding
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will be given by equation (27). However, as q
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appears in the hyperbolic terms of the
frequency equation (32), the sequence of values Mq
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Note also that for a given set of boundary conditions, the critical spatial characteristic
value p
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, given by equation (30), is most likely not in Mp
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. If p
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is a value in

the "rst sequence then it should be a solution of the "rst frequency equation (31) of the
system and the corresponding q
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will be zero, while if it is a value in the second sequence

then it should result as a consequence of q
n
"0 being a solution of the second frequency

equation (32). The existence of this critical spatial characteristic value pair Sp
c
, 0T, in either

of the two ordered pairs of characteristic value sequences, will imply the existence of a mode
of vibration, usually referred to as the pure shear mode of vibration. This mode of vibration
exists only for special boundary conditions. Notably, the hinged}hinged beam admits the
solution q
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"ir
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"0 in its second frequency equation given by
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and hence gives rise to the pure shear mode of vibration. The natural frequency parameter,
/
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, corresponding to this mode is given by ab/2

c
"1. This pure shear mode of vibration for

the hinged}hinged beam was noted and discussed in references [4, 11, 12].
From the above discussion, it is clear that
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are both solutions of the ODE (14). Two distinct mode shapes, namely g
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(f) and g
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(f), are

now seen to correspond to the two ordered pairs of characteristic values Sp
n
, q

pn
T and

Sp
qn
, q
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T. Note that since q
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can be expressed as q
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, the mode shape (35) contains

trigonometric terms only, where the last two hyperbolic terms of q
n

in equation (35) are
actually trigonometric terms in r

n
. However, this form of representation will be maintained

in order to highlight the fact that it is a pair of characteristic values that correspond to
a particular mode shape and not p

n
or q

n
in an individual sense.

3.3. ON THE TWO FREQUENCY SPECTRA

In order to derive the complete solution to the Timoshenko beam equation it is necessary
to determine the natural frequency parameter, /

n
, that corresponds to the mode shape
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It can be seen that since the characteristic values q
n
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, where r
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is real, for
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pn

and /
qn

in equation (12), and A@
pn

, A@
qn
,

B @
pn
and B @

qn
are four arbitrary constants. Therefore, the two sequences of the ordered triple of

values MSp
n
, q

pn
, /

pn
TN=

n/0
and MSp

qn
, q

n
, /

qn
TN=

n/0
will give all the possible solutions to the

boundary value problem of the Timoshenko beam and thus the complete solution will be
the series expansion given by

g (x, t)"
=
+
n/0
CgpnA

x

¸B (A
n1

sinu
pn

t#A
n2

cosu
pn

t)#g
qnA

x

¸B (B
n1

sin u
qn
t#B

n2
cosu

qn
t)D,
(42)

where it should be recalled that g
pn

and g
qn

correspond to the ordered pairs Sp
n
, q

pn
T and

Sp
qn
, q

n
T respectively. A

n1
, A

n2
, B

n1
and B

n2
appearing in equation (42) are arbitrary

constants. Four initial conditions on g (x, t) are required to determine them and thereby
completely solve the initial value boundary value problem of the Timoshenko beam.

Considering the two modes of vibration, corresponding to the triples, Sp
n
, q

pn
, /

pn
T and

Sp
qn
, q

n
, /

qn
T, it follows from equation (21) that

q2
pn
!p2

n
"!/2

pn
(a#b), q2

n
!p2

qn
"!/2

qn
(a#b). (43, 44)
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TABLE 1

Progression of the ordered triple values for the hinged}hinged beam

p
m

q
m

/
m

n 0)576n 5)74
2n 0)638n 13)31
3n 0)602n 20)64
4n 0)516n 27)86
5n 0)364n 35)03

5)81n 0 40)83s

6n 0)184ni 42)16
7n 0)483ni 49)29
8n 0)681ni 56)40
9n 0)852ni 63)50

9)94n ni 70)17s

10n 1)010ni 70)60
F F F

17n 1)985ni 120)23
17)11n 2n i 121)03s

18n 2)117ni 127)31
F F F

24n 2)895ni 169)82
24)8n 3n i 175)64s

25n 3)023ni 176)90
F F F

sValues are from the sequence MSp
qn

, q
n
, /

qn
TN=

n/0
and the rest are from the sequence MSp

n
, q

pn
, /

pn
TN=

n/0
.
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It was pointed out in section 3.2 with the aid of Figure 1 that, if p
n
"p

qm
, then q

pn
"q

m
and

hence it is clear from equations (43) and (44) that /
pn
"/

qm
for p

n
"p

qm
. Therefore, for

p
n
'p

c
, p

n
)p

qm
implies q

pn
)q

m
and /

pn
)/

qm
for two adjacent values of p

n
and p

qm
, giving

rise to a simultaneous progressive ordering of the ordered triple of values. This is shown in
Table 1 for the case of the hinged}hinged beam where the values marked by an &&s'' are those
from the sequence MSp

qn
, q

n
, /

qn
TN=

n/0
and the rest are from the sequence MSp

n
, q

pn
, /

pn
TN=

n/0
.

Thus, it is concluded that the two sequences of the ordered triple of values, which give all the
modes of vibration, can be combined as MSp

m
, q

m
, /

m
TN=

m/0
to give a single progressively

ordered set.
Levinson and Cooke [10] argue, for the case of the hinged}hinged boundary conditions

only, that since all mode shapes are considered in forming the general series expansion (42),
it might not be relevant to consider u

pn
and u

qn
as components of two distinct spectra,

especially since they can be combined to form a single ordered set. Prathap [14] counters
that it is not su$cient to obtain only a ordering of the natural frequencies but that
a simultaneous ordering of their corresponding mode shapes was required as well. He
further argues that this would be possible only if the two natural frequencies are considered
to be from two distinct spectra. However, as pointed out at the end of the previous
paragraph, a complete, single, progressive ordering of all the natural frequencies and their
corresponding mode shapes into one single set results, when the ordered pairs of
characteristic values Sp

n
, q

pn
T and Sp

qn
, q

n
T are considered collectively to be representative

of the mode shapes g
pn

and g
qn
. It should be noted that the latter result is obtained in this

paper irrespective of the boundary conditions and hence is general. Thus, we have obtained
the ordering required by Prathap [14], and have thereby answered the last argument for
considering the spectrum of solutions to have two distinct components.
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4. NUMERICAL EXAMPLE

How a single progressive ordering of the mode shapes and their corresponding natural
frequencies are facilitated by the natural representation of the mode shapes by a pair of
characteristic values will be demonstrated in this section with the aid of the box beam used
in reference [4]. The parameters of the beam result in a"0)19695 and b"0)00305 which
gives

a#b"0)20000, ab"0)00060. (45, 46)

Substituting equations (45) and (46) into equations (27) and (28), Figure 1 can be obtained.
Figure 1 shows the dependency between the characteristic values p

n
and q

pn
, and p

qn
and q

n
.

The solid line gives the relationship between q2
pn

and p
n
given by equation (27) and the line

marked with &&#'' gives the relationship between q2
n

and p
qn

given by equation (28). This
clearly shows that for q2

n
(0, if p

n
"p

qn
then q

pn
"q

n
and thus a simultaneous progressive

ordering of the ordered pairs of characteristic values or in other words a simultaneous
progressive ordering of the mode shapes is made possible. It should be noted here that these
conditions are achieved irrespective of the boundary conditions and hence are general.

Next, the simultaneous ordering of the mode shapes and their corresponding natural
frequencies, which was presented in section 3.3, will be demonstrated for the hinged}hinged
boundary conditions.

4.1. HINGED}HINGED BOUNDARY CONDITION

The two frequency equations (31) and (32) for the hinged}hinged boundary conditions as
given in reference [4] are

f
1
(p

n
)"sin p

n
sinh q

pn
"0, f

2
(r
n
)"sin p

qn
sin r

n
"0. (47, 48)

p
n
"nn for n"0, 1, 2, 3,2 is a solution of equation (47) and the corresponding q

pn
will be

given by equation (27). Similarly, r
n
"nn for n"0, 1, 2, 3,2 is a solution of equation (48)

and the corresponding p
qn

will be given by equation (28). The corresponding natural
frequencies /

pn
and /

qn
are calculated from equations (37) and (38) respectively. Table 1

gives the solution pairs Sp
n
, q

pn
T of f

1
(p

n
)"0 and Sp

qn
, q

n
T of f

2
(r
n
)"0 and their

corresponding natural frequencies. The values marked by an &&-'' are those from the
sequence MSp

qn
, q

n
, /

qn
TN=

n/0
and the rest are from the sequence MSp

n
, q

pn
, /

pn
TN=

n/0
. Thus, as

concluded in section 3.3 it is seen that the two sequences of the ordered triple of values can
be combined as MSp

m
, q

m
, /

m
TN=

m/0
to give a single progressively ordered set.

5. CONCLUSION

The series expansion solution to the Timoshenko beam was investigated in this paper
with the objective of providing answers to open questions concerning the nature of the
spectrum of the Timoshenko beam model. In this context it was shown in section 3.2 that
a particular mode shape of the solution can be expressed by an ordered pair of characteristic
values, and that two independent sequences of such ordered pairs exists for a particular
given beam conditions. Further, it was shown in section 3.3 that for each of these ordered
pairs of characteristic values, there exists a corresponding unique natural frequency. Thus, if
these pairs of characteristic values and the corresponding natural frequency were to be
considered as an ordered triple, it would completely represent one particular solution of the
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Timoshenko beam model. It was also shown that a progressive ordering of all the ordered
triples into one single set is possible. This implies that there exists a single progressive
ordering of all the natural frequencies and their corresponding modeshapes of the
Timoshenko beam model and puts to rest the last remaining criticism of the single spectrum
interpretation of the Timoshenko beam model structure.
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APPENDIX A: COEFFICIENTS

d
n1
"

1

p
n
¸

(/2
n
b!p2

n
)c

n2
, d

n2
"

!1

p
n
¸

(/2
n
b!p2

n
)c

n1
, (A.1, A.2)

d
n3
"

1

q
n
¸

(/2
n
b#q2

n
)c

n4
, d

n4
"

1

q
n
¸

(/2
n
b#q2

n
)c

n3
. (A.3, A.4)
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